Leçon 157 : Matrices symétriques réelles, matrices hermitiennes

1 Généralités

1.1 Définition et premières propriétés (Gourdon, Rombaldi)

- Définition + exemples
- L'ensemble est un sous $\mathbb R$ ev de dimension $\frac{n(n+1)}{2}$ (énoncé dual avec l'ensemble des herminitiennes)
- Quelques opération laissant stable l'ensemble $(M + {}^tM, M^tM...)$
- Décomposition de S(n) et H(n) en somme direct
- Définition des autres espaces (matrices définies etc.)

1.2 Lien avec formes quadratiques/hermitiennes

- Définitions formes quad/herm
- Définitions matrices associées + exemples
- Elles sont symétriques/hermitiennes ssi les formes associées le sont
- Une ou deux remarques en plus (lien entre définie positive et dégénérée par exemple)

2 Réduction et application

2.1 Théorème spectral

- Lemme : Le spectre des matrices symétriques est inclus dans $\mathbb R$
- Les sous-espaces propres sont en somme orthognales
- Théorème spectral (matriciel!)
- Un exemple 2x2
- Diagonalisation simultanée

2.2 Matrices symétriques définies positives et signature

- Caractérisation des matrices positives/définies positives
- Corollaire
- Dév 1 : Critère de Sylvester
- Application à la matrice $(\frac{1}{|i-j|+1})_{1 \le i,j \le n}$
- Réduction de Gauss + Exemple
- Signature + loi de Sylvester
- Classes d'équivalences pour l'action par congruence

2.3 Considérations topologiques

- Existence de la racine carrée + compacité de $\mathcal{O}_n(\mathbb{R})$ \longrightarrow Décomposition polaire
- Dév 2 : Déf rayon spectral + expression de la norme 2 en fonction du rayon spectral

3 Autres applications

3.1 Calcul diff

- Hessienne + Schwarz
- Application sur les extremas

3.2 Numérique

• À voir plus tard